A Growing Stem Inhibits Bud Outgrowth – The Overlooked Theory of Apical Dominance
نویسنده
چکیده
Three theories of apical dominance, direct, diversion, and indirect, were proposed in the 1930s to explain how auxin synthesized in the shoot apex might inhibit axillary bud outgrowth, and thus shoot branching. The direct and diversion theories of apical dominance have been investigated in detail, and they are replaced with the current auxin transport canalization and second messenger theories, respectively. These two current theories still cannot entirely explain the phenomenon of apical dominance. Although there is ample evidence that the inhibition of bud outgrowth by auxin from the shoot apex is linked to stem elongation and highly branched auxin biosynthesis or signaling mutants are dwarf, the third theory proposed in the 1930s, the indirect theory, that explains apical dominance as auxin-induced stem growth indirectly inhibits bud outgrowth has been overlooked. The indirect theory did not propose how a growing stem might inhibit bud outgrowth. Recent discoveries indicate bud dormancy (syn. quiescence, paradormancy) in response to intrinsic and environmental factors in diverse species is linked to enhanced growth of the main shoot and reduced sugar level in the buds. Since a growing stem is a strong sink for sugars, and sugar is indispensable for shoot branching, the indirect theory of apical dominance might now be explained as auxin-induced stem growth inhibits bud outgrowth by diverting sugars away from buds. Detailed study of the indirect theory and the effect of source-sink status on dormancy and outgrowth of axillary buds will advance our knowledge of apical dominance and shoot branching in plants.
منابع مشابه
Sugar demand, not auxin, is the initial regulator of apical dominance.
For almost a century the plant hormone auxin has been central to theories on apical dominance, whereby the growing shoot tip suppresses the growth of the axillary buds below. According to the classic model, the auxin indole-3-acetic acid is produced in the shoot tip and transported down the stem, where it inhibits bud growth. We report here that the initiation of bud growth after shoot tip loss...
متن کاملStrigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis.
During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us ...
متن کاملRoles for auxin, cytokinin, and strigolactone in regulating shoot branching.
Many processes have been described in the control of shoot branching. Apical dominance is defined as the control exerted by the shoot tip on the outgrowth of axillary buds, whereas correlative inhibition includes the suppression of growth by other growing buds or shoots. The level, signaling, and/or flow of the plant hormone auxin in stems and buds is thought to be involved in these processes. ...
متن کاملCytokinin is required for escape but not release from auxin mediated apical dominance
Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by aux...
متن کاملChange in Auxin and Cytokinin Levels Coincides with Altered Expression of Branching Genes during Axillary Bud Outgrowth in Chrysanthemum
In the production and breeding of Chrysanthemum sp., shoot branching is an important quality aspect as the outgrowth of axillary buds determines the final plant shape. Bud outgrowth is mainly controlled by apical dominance and the crosstalk between the plant hormones auxin, cytokinin and strigolactone. In this work the hormonal and genetic regulation of axillary bud outgrowth was studied in two...
متن کامل